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Dispersion Analysis for a TLM Mesh of

Symmetrical Condensed Nodes with Stubs
Juan A. Morente, Gonzalo Gim6nez, Jorge A. Porti, and Mohsine Khalladi

Abstract— In this paper, the dispersion characteristics of a

TLM mesh formed by interconnected symmetrical condensed
nodes with stubs are calculated using two different formulations.
The dispersion relation derived is an implicit function of the

wave number, frequency, dielectric permittivity, and magnetic
permeability. Group and phase velocities are obtained for the
three fundamental directions and different values of the relative
permittivity. The study demonstrates that an increase in the
modeled-medium permittivity leads to a decrease in the cutoff

frequency for TLM numerical results.

I. INTRODUCTION

T HE Transmission-Line Modelling (TLM) method is a

conceptual model that produces a time-domain numerical

technique for solving fields and networks. As with any numer-

ical method based on a segmentation of space and time, TLM

implies undesired dispersion to be present in the numerical

results. Several authors have studied the dispersion problem

in a TLM mesh of symmetrical-condensed nodes without

stubs [ 1]–[4], proving that it has characteristics similar to

those of the finite-differences time-domain method [4]. P. B.

Johns developed with the condensed node with stubs [5] a

TLM structure in which extra inductances and capacitances

are locally added to the node, so allowing the structure

to be used for modelling anisotropic and inhomogeneous

media. In this paper, two different formulations for obtaining

the dispersion relation of the TLM mesh of symmetrical

condensed nodes with stubs are presented, both formulations

providing identical numerical results that serve as numerical

validation of the proposed expressions. The numerical analysis

of these dispersion relations allows the phase and group

velocities to be obtained as a function of the frequency for

the three fundamental directions in a TLM mesh and also for

different values of the dielectric permittivity e..

II. DERIVATION OF THE DISPERSION RELATION

To obtain the dispersion relation in a TLM mesh of symmet-
rical condensed nodes with stubs, it is advisable to undertake

a similar analysis to that of the stubless node [1], [2]. Let

us therefore consider the two nodes shown in Fig. 1: node

C is a conventional symmetrical condensed node, and node

D, whose 12 principal lines are the 12 principal transmission
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Fig. 1. Nodes C and D used to calculate the dispersion relation.

lines belonging to the six nodes adjacent to C. Two different

formulations to obtain the dispersion relation are proposed in

this paper. The first is based on the separation of voltages at

node C in the stubs and the 12 principal lines contribution. The

second formulation, however, considers C to be a symmetrical

condensed node with stubs and D to be formed with the 12

transmission lines belonging to the six nodes adjacent to C plus

the stub ports of node C. Thus, while the first method involves

the use of 12x 12 matrices, 18x 18 matrices are required for

the second.

A. Formulation with 12 x 12 Matrices

Let us consider a symmetrical condensed node with stubs

and divide the scattering matrix, with dimensions of 18x18,

into four sub-matrices, S(12X12), G(12x6), E(6x12), H(6x6):

(1)

This matrix allows us to relate the 18 incident and reflected

voltages at node C and time t~=nAt+to, represented by vectors

[T]t. and [W’]t.,by the equation [5]:

[v: ],n = Sstub[y],n~ (2)

However, because the propagation is only carried out through

the 12 principal transmission lines that connect nodes C and

D, it is advisable to divide vectors [Vj]tn and [V~]tn into

two contributions. One is related to the 12 principal lines,

represented by the vectors [v~]tm and [v:] t. with 12 elements,

and the other involves the stub voltages, denoted by vectors

PJ:,sltfi and [%,s]tn with six elements each. Therefore, the

incident and reflected voltages can be expressed by

[>1[w Itn = .:. [)1;[Y1,.=$, , (3)
tn tn
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and, at a generic time tm = nAt + to, the voltages reflected

at the 12 lines and stubs are

[v~],n = S[v~]tn + G[v& ,
(4)

[vi,,],. = EIvi],n + H[vi,,]t.,

respectively.

Unlike the node without stubs, this node stores energy in

the stubs as time goes by. This fact demands the use of a

numerical-process time analysis in order to obtain the relations

between the incident and reflected voltages at the node at a

particular moment.

Let us consider an initial time to, for which there is no

energy in the stubs, that is to say, [v~,~]tO = O. Thus, by using

(4), we may easily obtain

[v% = S[v:]to ,

[vz,,lto = E[v:]to .
(5)

At a later time tl = At + to, the voltages incident at the

node through the three open and three closed stubs are related

with the reflected voltages at time to by

[v:,s 1,1 = Q[v;,.1,0, (6)

Q being a diagonal matrix with Qii = 1 for z =1, 2, and 3

(open stubs) and Q,, = – 1 for i =4, 5, and 6 (short-circuited

stubs). Thus, by combining (4)–(6), it may be seen that

[V:]t,= S[t]t,+ GQE[vi]to ,
[t,sk = Wilt, + HQE[&.

At time tz= 2At + to and keeping in mind

[TJ~,s1,2= Q[w&sL, ,

itis verified that

(7)

that

(8)

[v% = S[v:]t, + GQ[EIv;]tl + HQE[v:]t,] (9)

and

[v~,,lt, = E(v~]t, + HQ[EIvl]t, + HQE[vi]t,] . (10)

Carrying out this iterative procedure until a generic time

tn = nAt + to, the voltages reflected at the lines of node C

are found to be (11) and (12), shown at the bottom of the page.

However, because the propagation is carried out through the

12 principal lines, we will only use for our purpose (1 1), which

provides the voltage vector reflected to these lines.

Let us now suppose that a plane wave of frequency w is

propagating through the TLM symmetrical-condensed node

mesh. The incident voltages at time tnand tn_Iwill be related

by

V~(t. – At) = e-jWAtV~(t.). (13)

Since the time delay or numerical time-step, At, is connected

with the lattice constant, Al, by means of the relationship

Al=At/2c, the propagation constant of the wave in the vac-

uum, kO, is related with the frequency w through wiAt =

kOA1/2. So, the time-delays appearing in (13) can be elimi-

nated by using a 12x12 diagonal transmission matrix, denoted

by T, whose non-zero elements are Tii = e–]K0A112 for
i =1 ,...,12. By doing so, we obtain that

[v~ltn = [s + GQ [ET + HQET2 + HQHQET3 +””.] lIv&,
(14)

which, due to the fact that matrices T, II,and Q are diagonal,

gives us

[v~]tn = [S+ GQT,AE][v& , (15)

where T~ = e–~ ‘O A1/210, 10 being the 6x6 identity matrix,

and A a 6x6 matrix given by the following summation:

co

A = ~lHQTSln. (16)
Il=o

Let us note that the upper limit of the summation for A has

been supposed to be infinite because the stubs are continuously

storing and giving back energy.

In addition to (15), the incident and reflected voltages at

both nodes C and D ([v:]~n ,[v~],n, [vg]tn, [v~],n ) are related

by the following conditions [IL]:

● Propagation between adj scent nodes condition

PJ:l,n = T[% 1,. . (17)

● Floquet’s theorem, i.e., monochromatic wave condition

[’% 1,.= w: Itn. (18)

where T is the above-definecl diagonal transmission matrix

that connects nodes D and C, and can be expressed by

T = e–~KOAz/21 (1 is a 12x12 unit matrix), and P is a

nondiagonal 12x 12 matrix whose nonzero elements are

Pl,lz = P5,7 = e3KgA1, P2,9 = P4,8 = e~K’A1,

P3,11 = pf3,1i3 = e~K’A1, P7,5 = P12,1 = e–~K~AZ

P8,4 = P9,2 = e–~KZAZ, P1O 6 = ~11 3 = e–~K”A1 (19)

k., kg, and kz being the components of the plane-wave

propagation constant in the TILM mesh.

Combining (15), (17), and (18), the following dispersion

relation can be obtained:

det[I – TPS – TPGQT~AE] = O, (20)

which is an implicit function of the frequency and wave

number.

[W. = W:lt. + GQ[Wiltn_,+ HQW:L + HQHQW:L + ~~] (11)

[vg,,]tn = Wilt.+ HQ[Wilt.-, + HQE[V:L. + HQHQ%i]t.-s + ~ ~ ] .
(12)
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B. Formulation with 18 x 18 Matrices

Let us consider two nodes, C and D, as before, but now C is

a symmetrical condensed node with stubs, and D is formed by

all the transmission lines that can be reached at time t+ At by

pulses reflected at node C and previous time t.Node D is then

formed by 12 transmission lines belonging to the six nodes

adjacent to node C and the six stub ports belonging to node C.

The first relationship between reflected and incident voltages

at node C is given by the 18x18 scattering matrix SstUb of the

symmetrical condensed node with stubs,

[v:],n= &ub[V: ]tn . (21)

The time delay of the wave propagating from node D to

node C can be summarized in matrix form as

[V: ],n = T,,ub[v; ],n . (22)

where Twub is a diagonal 18x18 matrix whose nonzero ele-

ments are TStw6 ~~= e–jKOA1/2, for ~ =1 ,...,15, and TStUb ~~=
–e–~KOAt/2, for i =16, 17, and 18. The minus sign in the last

elements of matrix T8tu6 is due to the fact that these stub ports

are short circuited, so the reflection coefficient equals – 1.

Floquet’s theorem forces the monochromatic wave condi-

tion and can be expressed by means of a new 18x 18 matrix,

denoted by l’~tUb, in such a way that the following relation

can be obtained

[V; ]tn = P.tub[v: ]tn . (23)

The first 12 rows and columns in l’s~~b are equal to P in (19)

and the rest of the elements are zero except the six belonging

to the diagonal, whose value equals 1, that is to say (PstU~)i~=l

for i =13,..., 18. These last six elements are 1 because the stub

ports of node C are also the stub ports of node D.

Combining (21), (22), and (23), an alternative analytic

dispersion relation is obtained in the form

det[I – T,tubp,tub&ub] = 0. (24),

III. NUMERICAL RESULTS

The dispersion relations (20) and (24) are implicit functions

of k., kg, k., k., ~. and p.. In an isotropic medium, the

dielectric permittivity is related to the characteristic admittance

Yn of the open- circuit stubs normalized to the characteristic

admittance YO of the principal lines, by the expression Y~ =

4(G. – 1), whereas the normalized impedance Z. of the shofi-

circuit stubs is related to the relative permeability u. by

Zm = 4(PT – 1). Once numerically solved, the dispersion

relations (20) and (24) supply identical results, thus providing

a numerical validation of the proposed dispersion relations.

Figs. 2–7 show the phase and group velocities, normalized to

the speed of light in the modeled medium, as a function of the

normalized frequency Al/AO, for the three principal directions

in a TLM mesh and also for different values of c. and P. =1.

It can be easily seen for both directions [1,0,0] (Figs. 2

and 3) and [1,1,1] (Figs. 4 and 5) that an increase in the

modeled- medium permittivity in a TLM mesh of condensed

symmetrical nodes with stubs leads to a decrease of the cutoff

frequency, which is frontier between the wave-propagation
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Fig. 2. Normalized phase velocity of a plane wave propagating in direction
[1 ,0,0].
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Fig. 3. Normalized group velocity of a plane wave propagating in direction
[1,0,0].
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Fig. 4. Normalized phase velocity of a plane wave propagating in direction

[1,1,1].

and the forbidden frequency zones of the mesh. Thus, the
lower-frequency zone, in which the modeled medium is con-

sidered to be nondispersive, is moved towards lower frequency

values. For direction [1, 1,0] (see Figs. 6 and 7), the exis-

tence of a particular value of e., e. = 2, for which the
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Fig. 6. Normalized phase velocity of a plane wave propagating in direction
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TLM symmetrical-condensed-node with stubs mesh presents

no dispersion, causes an improvement in the dispersive char-

acteristics when C. is near such a value. However, an increase

in c. above this particular value results in a similar behavior

to that of the other directions considered.
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Fig. 8. Fourier transform ofa plane wave with Gaussian shape after propa-
gating through the TLM mesh with symmetrical-condensed-nodes with stubs

in the three main directions for e. = 2.

Let us note that the wavelength, A, of a medium with a

dielectric constant c, is related to the vacuum wavelength, AO,

by~o = (cr)l/2A Foraspecific frequency, this lmeans that an

increase in c, causes adecreaseboth in the wavelength of the

modeled medium and in the bandwidth of the nondispersive

region. Nevertheless, it can be observed from the results

presented in Figs. 2–7 that these decreases are such that the

nondispersive region in delimited by an approximate upper

wavelength given by A/Al = 10, as is usual in most low-

frequency numerical methods.

In order to verify the above results, we have simulated the

propagation of a electromagnetic plane wave through a TLM

mesh of symmetrical-condensed nodes with stubs. The mesh is

a cubic domain with an edge of dimension 50A1. The incident

electric field, with a Gaussian-pulse shape and a large spectral

bandwidth, is given by

E(t) = Eoe–92(t–tma’)’ , (25)

where 130 = 1 V/m, t~az = (ln 100)1/2/g, g =0.451Atand

At =1.25 .10-2 ns. The propagation along the direction [1,0,0]

is simulated by exciting port 6 in each node of the z = 3

plane and the output is placed, in each case, at the point

(10, 10, 10), expressed in Al units. For direction [1,1,0], ports

5 and 6 were excited in the nodes located at plane $ +

y = 6, perpendicular to the propagation direction. Finally,

propagation in the direction [1,1,1] is obtained by suitably

exciting ports 2, 4, 5, and 6 of the 10 nodes contained in.

the z + y + z = 6 plane of the cubic volume modeled by the

TLM lattice. Due to the absence of scatterers in the lattice, the

boundary conditions were implemented by simple symmetry

considerations [6].

The results are plotted in Fig. 8, which maps the Fourier

transform of the electric field once it has propagated a certain

distance through a medium with c. =2 along the three main
directions. The appearance of the cutoffs in directions [1,0,0]

and [1, 1,1] can be seen, as well as the fact that they fully

coincide with the values predicted by the dispersion rela-

tions previously calculated. In addition, for direction [1,1,0],

the Fourier transform in the propagated field coincides with

the transform of the incident field, which corroborates the
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predicted absence of dispersion. It can be also noted from

the direction [1, 1,1] analysis that the tail of this transform

rises slightly at frequency Al/A. =0.48, which denotes the

beginning of a spurious-mode band.

IV. CONCLUSION

A derivation of the dispersion relation of the TLM-

symmetrical-condensed node with stubs mesh and the

subsequent numerical analysis of the determinant in the

dispersion relation has enabled us to obtain the phase and

group velocities as a function of the frequency and dielectric

permittivity for the three fundamental directions of this TLM

lattice.

For directions [1,0,0] and [1, 1,1 ], it has been shown that an

increase of e. involves a reduction in the cutoff frequencies

and so in the width of the desired nondispersive band. For

direction [1, 1,0], a TEM plane wave suffers no dispersion

effects when a medium with q- = 2 is numerically modeled.

For higher values of the dielectric permittivity, however, this

direction shows a dispersive behavior similar to that observed

for the previously mentioned directions. In TLM with stubs,

as with other numerical methods, the unit cell size must be

of the order of 0.1 of the wavelength at the highest frequency

of interest.
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