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Dispersion Analysis for a TLM Mesh of
Symmetrical Condensed Nodes with Stubs

Juan A. Morente, Gonzalo Giménez, Jorge A. Porti, and Mohsine Khalladi

Abstract— In this paper, the dispersion characteristics of a
TLM mesh formed by interconnected symmetrical condensed
nodes with stubs are calculated using two different formulations.
The dispersion relation derived is an implicit function of the
wave number, frequency, dielectric permittivity, and magnetic
permeability. Group and phase velocities are obtained for the
three fundamental directions and different values of the relative
permittivity. The study demonstrates that an increase in the
modeled-medium permittivity leads to a decrease in the cutoff
frequency for TLM numerical results.

I. INTRODUCTION

HE Transmission-Line Modelling (TLM) method is a

conceptual model that produces a time-domain numerical
technique for solving fields and networks. As with any numer-
ical method based on a segmentation of space and time, TLM
implies undesired dispersion to be present in the numerical
results. Several authors have studied the dispersion problem
in a TLM mesh of symmetrical-condensed nodes without
stubs [1]-[4]. proving that it has characteristics similar to
those of the finite-differences time-domain method [4]. P. B.
Johns developed with the condensed node with stubs [5] a
TLM structure in which extra inductances and capacitances
are locally added to the node, so allowing the structure
to be used for modelling anisotropic and inhomogeneous
media. In this paper, two different formulations for obtaining
the dispersion relation of the TLM mesh of symmetrical
condensed nodes with stubs are presented, both formulations
providing identical numerical results that serve as numerical
validation of the proposed expressions. The numerical analysis
of these dispersion relations allows the phase and group
velocities to be obtained as a function of the frequency for
the three fundamental directions in a TLM mesh and also for
different values of the dielectric permittivity e,.

II. DERIVATION OF THE DISPERSION RELATION

To obtain the dispersion relation in a TLM mesh of symmet-
rical condensed nodes with stubs, it is advisable to undertake
a similar analysis to that of the stubless node [1], [2]. Let
us therefore consider the two nodes shown in Fig. 1: node
C is a conventional symmetrical condensed node, and node
D, whose 12 principal lines are the 12 principal transmission
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Fig. 1.

lines belonging to the six nodes adjacent to C. Two different
formulations to obtain the dispersion relation are proposed in
this paper. The first is based on the separation of voltages at
node C in the stubs and the 12 principal lines contribution. The
second formulation, however, considers C to be a symmetrical
condensed node with stubs and D to be formed with the 12
transmission lines belonging to the six nodes adjacent to C plus
the stub ports of node C. Thus, while the first method involves
the use of 12x12 matrices, 18x18 matrices are required for
the second.

A. Formulation with 12 x 12 Matrices

Let us consider a symmetrical condensed node with stubs
and divide the scattering matrix, with dimensions of 18x18,
into four sub-matrices, S(12x12), G(12x6), E(6x12), H(6x6):

S G
Sstub = IiE j‘
This matrix allows us to relate the 18 incident and reflected

voltages at node C and time t,=nAt+tg, represented by vectors
[V, and [V[]:,, by the equation [S]:

[Vcr]tn = Sstub[vcz]tn : 2

However, because the propagation is only carried out through
the 12 principal transmission lines that connect nodes C and
D, it is advisable to divide vectors [V7]; and [V[];, into
two contributions. One is related to the 12 principal lines,
represented by the vectors [v}];, and [v]];, with 12 elements,
and the other involves the stub voltages, denoted by vectors
[vé JJi, and [v] ], with six elements each. Therefore, the
incident and reflected voltages can be expressed by

{v;"]tn:[ﬂ ;[Vghnz{”ﬂ LB
c tn tn

D
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and, at a generic time ¢, = nAt + tg, the voltages reflected
at the 12 lines and stubs are

[Vilen = Slvelen + Glve gt

. 4
W Jo = Efvile, + H[vE o, @

respectively.

Unlike the node without stubs, this node stores energy in
the stubs as time goes by. This fact demands the use of a
numerical-process time analysis in order to obtain the relations
between the incident and reflected voltages at the node at a
particular moment.

Let us consider an initial time ¢, for which there is no
energy in the stubs, that is to say, [v} ;];, = 0. Thus, by using
(4), we may easily obtain

[Veleo = S[V::]to’ (5)

[Vi,s]to = E[vvls]to‘

At a later time t; = At + #p, the voltages incident at the
node through the three open and three closed stubs are related
with the reflected voltages at time ¢y by

[V le, = Qi ]y, » (©)

Q being a diagonal matrix with Q;; = 1 for ¢ =1, 2, and 3
(open stubs) and Q,, = —1 for 4 =4, 5, and 6 (short-circuited
stubs). Thus, by combining (4)-(6), it may be seen that

[Vf:]tl = S[Vci:]fq + GQE[Vic]toa

J : 7
(9% ol = Elvie, + BQE[Vi:,. @

At time to = 2At + tp and keeping in mind that
[veale, = QUELl,, C®

it is verified that
[vele, = Slvele, + GQ[Elvele + HQE[v )] )

and
Ve sk, = Elvde, + HQ[E[v(Js, + HQE[v].

Carrying out this iterative procedure until a generic time
tn, = nAt + 1g, the voltages reflected at the lines of node C
are found to be (11) and (12), shown at the bottom of the page.
However, because the propagation is carried out through the
12 principal lines, we will only use for our purpose (11}, which
provides the voltage vector reflected to these lines.

Let us now suppose that a plane wave of frequency w is
propagating through the TLM symmetrical-condensed node
mesh. The incident voltages at time £,, and ¢,, _; will be related
by

(10)

Vi(t, — At) = e WAV (1), (13)

Since the time delay or numerical time-step, A¢, is connected
with the lattice constant, A/, by means of the relationship
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Al=At/2c, the propagation constant of the wave in the vac-
uum, k,, is related with the frequency w through wAt =
k,Al2. So, the time-delays appearing in (13) can be elimi-
nated by using a 12x12 diagonal transmission matrix, denoted
by 7T, whose non-zero clements are T = e KoAU2 for
1 =1,...,12. By doing so, we obtain that

[V, =[S + GQ[ET + HQET? + HQHQET? +- - -]][vi]s.,

(14)
which, due to the fact that matrices 7T', H,and () are diagonal,
gives us

[vile, = [S + GQTLAE][vi]s,, (15)

where Ty = e 7K°A/2] 1, being the 6x6 identity matrix,
and A a 6x6 matrix given by the following summation:

A=) [HQT" (16)

n=0

Let us note that the upper limit of the summation for A has
been supposed to be infinite because the stubs are continuously
storing and giving back energy.

In addition to (15), the incident and reflected voltages at
both nodes C and D ([V];, .[V4]t., [VE]s,. [V]]e,) are related
by the following conditions [1]:

* Propagation between adjacent nodes condition

[’Uj:]tn = T[vg]tn . )

¢ Floquet’s theorem, i.e., monochromatic wave condition

[Ug]tn = P[U:]tn . (18)
where T is the above-defined diagonal transmission matrix
that connects nodes D and C, and can be expressed by
T = e 7KoAl/2] (T is a 12x12 unit matrix), and P is a
nondiagonal 12x12 matrix whose nonzero elements are

Pi1s = Ps7 = e?BVAL Pyg = Pyg = /K780

P3 11 = Pg o = e#KAL Prg = Py = e IKvAl

Pgy= Pgy= e dK2AL Pigg = Py 3 = e 7KAL (19)
k. ky, and k, being the components of the plane-wave
propagation constant in the TLM mesh.

Combining (15), (17), and (18), the following dispersion
relation can be obtained:

det{l — TPS — TPGQTAE] = 0, (20)

which is an implicit function of the frequency and wave
number.

[vil, = S[vile, + GQ[E[NV]:,_, + HQE[Vi):, , + HQHQE[V ], , +- -]

Ve = Evi]e, + HQ[E[Vi)i,_, + HQE[vi]:,_, + HQHQE[v!],, , +---].

an

12)
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B. Formulation with 18 x 18 Matrices

Let us consider two nodes, C and D, as before, but now C is
a symmetrical condensed node with stubs, and D is formed by
all the transmission lines that can be reached at time ¢+ At by
pulses reflected at node C and previous time ¢. Node D is then
formed by 12 transmission lines belonging to the six nodes
adjacent to node C and the six stub ports belonging to node C.

The first relationship between reflected and incident voltages
at node C is given by the 18x18 scattering matrix Sgz,p Of the
symmetrical condensed node with stubs,
Ve, = Sse[VE ],

c

@n

The time delay of the wave propagating from node D to
node C can be summarized in matrix form as

Vel = Torw[Vi ), -

where Tapup 18 a diagonal 18x18 matrix whose nonzero ele-
ments are Tgpap ; = € IKOAY2 fori =1,...,15, and Tgpup i =
—e—IKoAl/2 for i =16, 17, and 18. The minus sign in the last
elements of matrix T gp is due to the fact that these stub ports
are short circuited, so the reflection coefficient equals —1.

Floquet’s theorem forces the monochromatic wave condi-
tion and can be expressed by means of a new 18x18 matrix,
denoted by P.yup, in such a way that the following relation
can be obtained

(22)

[Vc{]tn = Lstud [Vcr]tn (23)

The first 12 rows and columns in P, are equal to P in (19)
and the rest of the elements are zero except the six belonging
to the diagonal, whose value equals 1, that is to say (Pszu)i=1
for i+ =13,...,18. These last six elements are 1 because the stub
ports of node C are also the stub ports of node D.

Combining (21), (22), and (23), an alternative analytic
dispersion relation is obtained in the form

det[l - Tstusttusttub] =0.

1. NUMERICAL RESULTS

The dispersion relations (20) and (24) are implicit functions
of ks, ky, k., ko, € and p,. In an isotropic medium, the
dielectric permittivity is related to the characteristic admittance
Y,, of the open- circuit stubs normalized to the characteristic
admittance Y, of the principal lines, by the expression Y,, =
4(e, — 1), whereas the normalized impedance Z,, of the short-
circuit stubs is related to the relative permeability p,. by
Zn = 4(pr — 1). Once numerically solved, the dispersion
relations (20) and (24) supply identical results, thus providing
a numerical validation of the proposed dispersion relations.
Figs. 2-7 show the phase and group velocities, normalized to
the speed of light in the modeled medium, as a function of the
normalized frequency Al/),, for the three principal directions
in a TLM mesh and also for different values of ¢, and p, =1.

It can be easily seen for both directions [1,0,0] (Figs. 2
and 3) and [1,1,1] (Figs. 4 and 5) that an increase in the
modeled- medium permittivity in a TLM mesh of condensed
symmetrical nodes with stubs leads to a decrease of the cutoff
frequency, which is frontier between the wave-propagation
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Fig. 2. Normalized phase velocity of a plane wave propagating in direction
[1,0,01.
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Fig. 3. Normalized group velocity of a plane wave propagating in direction
[1,0,0].
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Fig. 4. Normalized phase velocity of a plane wave propagating in direction
[LL1].

and the forbidden frequency zones of the mesh. Thus, the
lower-frequency zone, in which the modeled medium is con-
sidered to be nondispersive, is moved towards lower frequency
values. For direction [1,1,0] (see Figs. 6 and 7), the exis-
tence of a particular value of €., ¢, = 2, for which the
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Fig. 5. Normalized group velocity of a plane wave propagating in direction
[1,1,1].
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Fig. 6. Normalized phase velocity of a plane wave propagating in direction
[1,1,00.
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Fig. 7. Normalized group velocity of a plane wave propagating in direction
[1,1,0].

TLM symmetrical-condensed-node with stubs mesh presents
no dispersion, causes an improvement in the dispersive char-
acteristics when ¢, is near such a value. However, an increase
in €, above this particular value results in a similar behavior
to that of the other directions considered.

455

Fourier Transform
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Fig. 8. Fourier transform of a plane wave with Gaussian shape after propa-
gating through the TLM mesh with symmetrical-condensed-nodes with stubs
in the three main directions for e, = 2.

Let us note that the wavelength, A, of a medium with a
dielectric constant ¢, is related to the vacuum wavelength, Ag,
by Ao = (&)*/?X. For a specific frequency, this means that an
increase in ¢, causes a decrease both in the wavelength of the
modeled medium and in the bandwidth of the nondispersive
region. Nevertheless, it can be observed from the results
presented in Figs. 27 that these decreases are such that the
nondispersive region in delimited by an approximate upper
wavelength given by A/Al = 10, as is usual in most low-
frequency numerical methods.

In order to verify the above results, we have simulated the
propagation of a electromagnetic plane wave through a TLM
mesh of symmetrical-condensed nodes with stubs. The mesh is
a cubic domain with an edge of dimension 50Al. The incident
electric field, with a Gaussian-pulse shape and a large spectral
bandwidth, is given by

E(t) = Ege™9 (7tmes)® | (25)

where Eg = 1 V/m, tya, = (In 100)/2/g, g =0.45/Atand
At =1.25-102 ns. The propagation along the direction [1,0,0]
is simulated by exciting port 6 in each node of the x = 3
plane and the output is placed, in each case, at the point
(10,10,10), expressed in Al units. For direction [1,1,0], ports
5 and 6 were excited in the nodes located at plane = +
y = 6, perpendicular to the propagation direction. Finally,
propagation in the direction [1,1,1] is obtained by suitably
exciting ports 2, 4, 5, and 6 of the 10 nodes contained in-
the = + y + z = 6 plane of the cubic volume modeled by the
TLM lattice. Due to the absence of scatterers in the lattice, the
boundary conditions were implemented by simple symmetry
considerations [6].

The results are plotted in Fig. 8, which maps the Fourier
transform of the electric field once it has propagated a certain
distance through a medium with ¢, =2 along the three main
directions. The appearance of the cutoffs in directions [1,0,0]
and [1,1,1] can be seen, as well as the fact that they fully
coincide with the values predicted by the dispersion rela-
tions previously calculated. In addition, for direction [1,1,0],
the Fourier transform in the propagated field coincides with
the transform of the incident field, which corroborates the
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predicted absence of dispersion. It can be also noted from
the direction [1,1,1] analysis that the tail of this transform
rises slightly at frequency Al/Ag =0.48, which denotes the
beginning of a spurious-mode band.

IV. CONCLUSION

A derivation of the dispersion relation of the TLM-
symmetrical-condensed node with stubs mesh and the
subsequent numerical analysis of the determinant in the
dispersion relation has enabled us to obtain the phase and
group velocities as a function of the frequency and dielectric
permittivity for the three fundamental directions of this TLM
lattice. -

For directions [1,0,0] and [1,1,1], it has been shown that an
increase of ¢, involves a reduction in the cutoff frequencies
and so in the width of the desired nondispersive band. For
direction [1,1,0], a TEM plane wave suffers no dispersion
effects when a medium with ¢, = 2 is numerically modeled.
For higher values of the dielectric permittivity, however, this
direction shows a dispersive behavior similar to that observed
for the previously mentioned directions. In TLM with stubs,
as with other numerical methods, the unit cell size must be
of the order of 0.1 of the wavelength at the highest frequency
of interest.

ACKNOWLEDGMENT

The authors would also like to thank Miss Christine M.
Laurin for her help in preparing the manuscript.

REFERENCES

[1] J. Nielsen and W. I. R. Hoefer, “A complete dispersion analysis of the
condensed node TLM mesh,” IEEE Trans. Magn., vol. MAG-27, pp.
3982-3985, Sept. 1991.

[2] J. Nielsen, “Spurious modes for the TLM-condensed node formulation,”
IEEE Microwave and Guided Wave Lett., vol. 1, pp. 201-203, Aug. 1991.

[3] D. H. Choi, “A comparison of the dispersion characteristics associated
with the TLM and FD-TD methods,”Int. J. Numerical Modelling:
Electronic Networks, Devices and Fields, vol. 2, pp. 203-214, 1989.

[4] J. A. Morente, G. Giménez, J. A. Porti, and M. Khalladi, “Group and
phase velocities in the TLM-symmetrical-condensed-node mesh,” JEEE
Trans. Microwave Theory Tech., vol. MTT-42, Mar. 1994.

[5] P. B. Johns, “A symmetrical condensed node for the TLM method,”
IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp. 370-377, Apr.
1987.

[6] J. A. Morente, J. A. Porti, and M. Khalladi, “Absorbing boundary
conditions for the TLM method,” IEEE Trans. Microwave Theory Tech.,
vol. MTT-40, pp. 2095-2099, Nov. 1992.

Juan A. Morente was born in Porcuna (Jaén),
Spain, in 1955. He rececived the Licenciado and
Doctor degrees in physics from the University of
Granada, Spain, in 1980 and 1985, respectively.
He is presently ' “Profesor Titular’”’ in the De-
partment of Applied Physics at the University of
Granada. His main fields of interest include elec-
tromagnetic theory and applied mathematics. His
current research activities deal with numerical anal-
ysis of physical systems and transient phenomena.

Gonzalo Giménez was born in Aguilas, (Murcia),
Spain, in 1968. He received his B.Sc. degree in
electronic and electrical physics in 1991 and his
M.Sc. degree in Applied Physics in 1993 (University
of Granada). He is currently doing his Ph.D. in the
Department of Applied Physics at the University of
Granada, Spain.

His current research interests deal with the numer-
ical analysis of waveguides and transmission lines
and numerical methods in applied electromagnetics

Jorge A. Porti was born in Valle de Escombreras,
Cartagena, (Murcia), Spain, in 1963. He received
the M.S. and Ph.D. degrees in Physics from the
University of Granada, Spain, in 1988 and 1993,
respectively.

From October 1988 to December 1990, he was
with Fujitsu ESPANA, S.A. where he was engaged
in data-communication switching. Since October
1990, he has been with the Department of Applied
Physics at the University of Granada, Spain, where
he is now assistant professor. His current research
activities deal with numerical solution of transient electromagnetic problems.

Mohsine Khalladi was born in Tangier, Morocco,
on November 27, 1963. He received his B.S. degree
in 1988 from the University of Abdelmalek Essaadi,
Tetouan, Morocco and Ph.D. degree in physics from
the University of Granada, Spain, in 1994.

Mr. Khalladi’s current research interests lie in
time-domain numerical solutions of scattering and
electromagnetic problems.



